Search results

24 items matching your search terms. Sort by relevance · date (newest first) · alphabetically
This study analyzes the ability of the Eastern Interconnection of the United States, one of the largest power systems in the world, to accommodate high penetrations of wind and solar power. Using advanced modeling and computing techniques, the project team simulated the large-scale adoption of wind and solar energy at a temporal resolution up to 5 minutes. The study represents the cutting-edge of power system modeling, employing a high spatial resolution to include all synchronous components of the Eastern Interconnection. Results suggest that the Eastern Interconnection can reliably integrate upwards of 30% variable renewable energy in the power mix. However, meeting the 30% target will require increased balancing area coordination, incentives for transmission and generation to provide necessary ancillary services, and increased flexibility of traditional generators. In addition to the technical report, the full dataset as well as animations showing net interchange for two study scenarios are available for free download.
Located in Integration Topics / Grid Integration Studies / Grid Integration Studies folder
The Eastern Wind Integration Transmission Study examines the operational impact of up to 20-30% wind energy penetration in the Eastern Interconnection, one of the three synchronous grids in the contiguous United States. The study addresses a variety of issues related to wind energy and transmission development, including the costs, impacts, and enabling mechanisms (e.g., geographic diversity, forecasting, operating reserves) associated with significant wind penetration. A follow-on study, the Eastern Renewable Generation Integration Study, is anticipated to be released in winter, 2015.
Located in Integration Topics / Grid Integration Studies / Grid Integration Studies folder
Developed in response to the ambitious RE targets established by the Hawaii Clean Energy Initiative, the Hawaii Solar Integration Study evaluates the operational impacts of high penetrations of solar PV (including both centralized and distributed PV) on the electricity grids of two Hawaiian islands: Maui and Oahu. The two islands provide examples of small power grids with differing levels of firm and RE capacity. The study examines variability, the ability to curtail power output, grid support, and load characteristics in the context of increasing variable RE on these systems. The technical reports underlying the summary are available here.
Located in Integration Topics / Grid Integration Studies / Grid Integration Studies folder
The Electricity Reliability Council of Texas (ERCOT) commissioned this study of the ancillary services requirements for its system to accommodate up to 15,000 MW of wind energy. The Study evaluates and makes recommendations related to the methodology used by ERCOT to determine ancillary service needs; estimates the impacts of wind generation on the costs of ancillary services; and identifies changes to procedures related to severe weather conditions. ERCOT re-evaluated—and largely validated—the results of this study in a 2013 update.
Located in Integration Topics / Grid Integration Studies / Grid Integration Studies folder
This report reviews grid interconnection codes that relate to the performance of wind turbines, as well as requirements that can validate wind farm and turbine performance. Also reviewed are modeling requirements for simulating the performance of wind farms in the power system. Specifically, the authors examine grid codes from the UK, Germany, Denmark, Spain, Texas, Canada, and Europe.
Located in Integration Topics / System Operations Improvements / System Operations Improvements folder
This step-by-step guide provides a comprehensive overview of power system planning and describes the key planning implications related to variable RE deployment and integration, with a particular focus on implications for emerging economics. The second part of the report describes the considerations needed to accurately represent variable RE in energy models and suggests several cross-cutting solutions to improve capacity expansion modeling.
Located in Integration Topics / Planning for Grid Integration / Planning for Grid Integration folder
Capacity expansion modeling is a fundamental tool for planning the future power system. Capacity expansion models can provide insights on possible pathways for the power system under different assumptions about technology innovation, transmission expansion, demand changes, and policies. This report summarizes the experience of capacity expansion modeling at the National Renewable Energy Laboratory (NREL). The authors address in detail NREL’s approach to key questions that arise when modeling future capacity expansion, with a particular emphasis on modeling significant levels of variable RE deployment.
Located in Integration Topics / Planning for Grid Integration / Planning for Grid Integration folder
When not properly addressed, high penetrations of DPV on a distribution system present issues like voltage overload, reverse power flow, and protection failure, which threaten system reliability. Drawing upon results from a five-year study of the Southern California Edison (SCE) distribution system, this handbook presents a detailed analysis of the potential impacts and mitigation techniques when integrating DPV. Written for distribution engineers, the handbook also provides a study guide for modeling and assessing PV impacts, covering topics such as model development, data validation and measurement, study criteria, and the steps involved in power flow and fault analysis. While the impacts and mitigation techniques described in this handbook are written for utility-scale PV systems (1-5 MW), much of the information is also relevant for the proliferation of smaller, DPV systems.
Located in Topics & Resources / Grid Planning, Integration, & Operations / Grid Planning, Integration, & Operations folder
This report, written to inform energy planning in China, showcases regulatory support, policies, and financing innovations that have enabled DPV deployment and market growth in the U.S.
Located in Topics & Resources / Regulation & Public Policy / Regulation & Public Policy folder
The U.S. state of Minnesota has enacted legislation allowing investor-owned utilities to use a value of solar tariff as an alternative to net metering for DPV. This document details the methodology participating utilities will use to calculate the value of solar tariff to account for several values of DPV (including energy and its delivery, generation and transmission capacity, transmission and distribution losses, and environmental value). The methodology includes detailed example calculations for each step.
Located in Topics & Resources / Regulation & Public Policy / Regulation & Public Policy folder
Advanced Search Filters

Use the filters below to fine tune or expand your search.

Tags
Start typing in order to select a tag
Location
Start typing in order to select a Location
Author(s)
Start typing in order to select a Contributor
Item type











New items since




Back to Top