Search results

24 items matching your search terms. Sort by relevance · date (newest first) · alphabetically
Initiated by the European Network of Transmission System Operators for Electricity (ENTSO-E), this study evaluates transmission-related challenges associated with four wind penetration growth scenarios (no wind growth from 2008 levels, best estimate of wind growth, optimistic but feasible growth, and growth when further grid enhancements are made beyond 2015). The study includes recommendations related to network finance, reinforcements, grid security and flexibility, consents, coordinated operation, grid code, network access rules, market development, offshore grids, and control of wind generation.
Located in Integration Topics / Grid Integration Studies / Grid Integration Studies folder
This report reviews grid interconnection codes that relate to the performance of wind turbines, as well as requirements that can validate wind farm and turbine performance. Also reviewed are modeling requirements for simulating the performance of wind farms in the power system. Specifically, the authors examine grid codes from the UK, Germany, Denmark, Spain, Texas, Canada, and Europe.
Located in Integration Topics / System Operations Improvements / System Operations Improvements folder
This manual includes the instructions, rules, procedures and guidelines that were established by the PJM regional transmission operator to support operations, planning, and accounting for both the regional transmission system and the PJM energy market.
Located in Integration Topics / System Operations Improvements / System Operations Improvements folder
ENTSO-E defines a common set of minimum requirements for the European-wide power system. The requirements include load-frequency control and reserves principles to ensure the operational security of the system and cross-border cooperation between transmission system operators. The requirements may also dictate the characteristics of the grid-connected systems, consumption, and distribution systems. The code addresses the load-frequency structure, operational rules, quality criteria, reserve dimensions and exchange, sharing and distribution, and monitoring.
Located in Integration Topics / System Operations Improvements / System Operations Improvements folder
This document outlines the process ENTSO-E has undertaken to develop network codes that define security and reliability, connection, third-party access, data exchange and settlement, interoperability, operational procedures in an emergency, capacity allocation and congestion management, trading and related technical and operational provisions, transparency, balancing, harmonizing transmission tariff structures, and energy efficiency. The network codes’ characteristics, the role within the development process, the process itself, interpretation of the rules, and a process for maintaining the codes are included.
Located in Integration Topics / System Operations Improvements / System Operations Improvements folder
This manual provides detailed guidance for the facilities and controls maintained by the New York Independent System Operator, a regional transmission operator. It includes sections on operations monitoring, transmission operations, scheduling operations, and dispatching operations for all generation types.
Located in Integration Topics / System Operations Improvements / System Operations Improvements folder
As part of the U.S. SunShot Initiative—aiming to make PV electricity cost-competitive with conventional generation by 2020—this report analyzes the impact of high-penetration variable generation on the distribution grid, it demonstrates that in most cases DG can be safely integrated at much higher levels than interconnection standards allow. By streamlining interconnection processes, deploying advanced inverter functionalities, and coordinating DGPV, upwards of 350 GW can be hosted on the U.S. grid with little additional hardware. The report also outlines challenges to interconnection such as voltage regulation, power flow, and protection issues. It then studies the role of storage and complementary technologies to overcome reliability constraints. This research is applicable outside of the U.S. in demonstrating how to maximize an existing grid for DG.
Located in Topics & Resources / Grid Planning, Integration, & Operations / Grid Planning, Integration, & Operations folder
Technological innovations are supporting increased DPV penetration levels. One important innovation involves the use of advanced inverter functionality to address PV grid integration challenges. In many cases these functionalities only require software and protocol updates to inverters currently in use. The report describes the use of advanced inverters to support voltage and frequency level control as DG comes on and off-line. Policy and regulatory considerations to support advanced inverter deployment are also presented in the paper.
Located in Topics & Resources / Grid Planning, Integration, & Operations / Grid Planning, Integration, & Operations folder
IEEE 1547 was introduced in 2003 when DER penetration was low in most places. As some regions like Germany, California, and Hawaii reach higher levels of DG penetrations, alterations to IEEE 1547 are required. IEEE has fast-tracked the development of a full-revision of 1547 to maintain cross-system compatibility; drafts of the new version enhance the capabilities of DER to provide grid support, voltage ride-through, and reactive power modes for generators in high-penetration contexts. The updated version is currently an active draft, the full version will be released in 2018. 1547.1 provides engineers with interconnection system testing guidelines and will also be updated. Both 1547 and 1547.1 are recognized by UL 1741 and are to be used in conjunction.
Located in Topics & Resources / Grid Planning, Integration, & Operations / Grid Planning, Integration, & Operations folder
IEEE 1547 was introduced in 2003 when DER penetration was low in most places. As some regions like Germany, California, and Hawaii reach higher levels of DG penetrations, alterations to IEEE 1547 are required. IEEE has fast-tracked the development of a full-revision of 1547 to maintain cross-system compatibility; drafts of the new version enhance the capabilities of DER to provide grid support, voltage ride-through, and reactive power modes for generators in high-penetration contexts. The updated version is currently an active draft, the full version will be released in 2018. 1547.1 provides engineers with interconnection system testing guidelines and will also be updated. Both 1547 and 1547.1 are recognized by UL 1741 and are to be used in conjunction.
Located in Topics & Resources / Grid Planning, Integration, & Operations / Grid Planning, Integration, & Operations folder
Advanced Search Filters

Use the filters below to fine tune or expand your search.

Tags
Start typing in order to select a tag
Location
Start typing in order to select a Location
Author(s)
Start typing in order to select a Contributor
Item type











New items since




Back to Top